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Abstract In the present paper we introduce a new methodology for the construction
of numerical methods for the approximate solution of the one-dimensional Schrödinger
equation. The new methodology is based on the requirement of vanishing the phase-lag
and its derivatives. The efficiency of the new methodology is proved via error analysis
and numerical applications.
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1 Introduction

The radial Schrödinger equation can be written as:

y′′(x) = [l(l + 1)/x2 + V (x) − k2]y(x). (1)
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Many problems in theoretical physics and chemistry, material sciences, quantum
mechanics and quantum chemistry, electronics etc. can be express via the above bound-
ary value problem (see for example [1–4]).

We give the definitions of some terms of (1):

– The function W (x) = l(l + 1)/x2 + V (x) is called the effective potential. This
satisfies W (x) → 0 as x → ∞

– The quantity k2 is a real number denoting the energy
– The quantity l is a given integer representing the angular momentum
– V is a given function which denotes the potential.

The boundary conditions are:

y(0) = 0 (2)

and a second boundary condition, for large values of x , determined by physical con-
siderations.

The last years an extended study on the development of numerical methods for the
solution of the Schrödinger equation has been done. The aim of this research is the
development of fast and reliable methods for the solution of the Schrödinger equation
and related problems (see for example [5–18], [19–124]).

We can divide the numerical methods for the approximate solution of the Schröding-
er equation and related problems into two main categories:

1. Methods with constant coefficients
2. Methods with coefficients depending on the frequency of the problem.1

The purpose of this paper is to introduce a new methodology for the construction of
numerical methods for the approximate solution of the one-dimensional Schrödinger
equation and related problems. The new methodology is based on the requirement of
vanishing the phase-lag and its derivatives. The efficiency of the new methodology
will be studied via the error analysis and the application of the investigated methods
to the numerical solution of the radial Schrödinger equation.

More specifically, we will develop a family of hybrid Numerov-type methods of
sixth algebraic order. The development of the new family is based on the requirement
of vanishing the phase-lag and its derivatives. We will investigate the stability and
the error of the methods of the new family. Finally, we will apply both categories
of methods the new obtained method to the resonance problem. This is one of the
most difficult problems arising from the radial Schrödinger equation. The paper is
organized as follows. In Sect. 2 we present the theory of the new methodology. In
Sect. 3 we present the development of the new family of methods. The error analysis
is presented in Sect. 4. In Sect. 5 we will investigate the stability properties of the new
developed methods. In Sect. 6 the numerical results are presented. Finally, in Sect. 7
remarks and conclusions are discussed.

1 When using a functional fitting algorithm for the solution of the radial Schrödinger equation, the fitted
frequency is equal to:

√
|l(l + 1)/x2 + V (x) − k2|.
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2 Phase-lag analysis of symmetric multistep methods

For the numerical solution of the initial value problem

y′′ = f (x, y) (3)

consider a multistep method with m steps which can be used over the equally spaced
intervals {xi }m

i=0 ∈ [a, b] and h = |xi+1 − xi |, i = 0(1)m − 1.
If the method is symmetric then ai = am−i and bi = bm−i , i = 0(1)�m

2 �.
When a symmetric 2k-step method, that is for i = −k(1)k, is applied to the scalar

test equation

y′′ = −ω2 y (4)

a difference equation of the form

Ak(H) yn+k + · · · + A1(H) yn+1 + A0(H) yn

+ A1(H) yn−1 + · · · + Ak(H) yn−k = 0 (5)

is obtained, where H = ωh, h is the step length and A0(H), A1(H), . . . , Ak(H) are
polynomials of H .

The characteristic equation associated with (5) is given by:

Ak(H) λk + · · · + A1(H) λ + A0(H) + A1(H) λ−1 + · · · (6)

+Ak(H) λ−k = 0 (7)

Theorem 1 [97] The symmetric 2k-step method with characteristic equation given
by (6) has phase-lag order q and phase-lag constant c given by

−cHq+2+O(Hq+4)=2Ak(H) cos(k H)+ · · · +2A j (H) cos( j H)+ · · ·+A0(H)

2k2 Ak(H)+ · · · + 2 j2 A j (H) + · · · + 2A1(H)

(8)

The formula proposed from the above theorem gives us a direct method to calculate
the phase-lag of any symmetric 2k-step method.

3 The new family of numerov-type hybrid methods—construction
of the new methods

3.1 First method of the family

We introduce the following family of methods to integrate y′′ = f (x, y) :

yn = yn − a0 h2 (
y′′

n+1 − 2 y′′
n + y′′

n−1

)

yn+1 + c1 yn + yn−1 = h2 [
b0

(
y′′

n+1 + y′′
n−1

) + b1 y′′
n

]
(9)
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The application of the above method to the scalar test Eq. 4 gives the following
difference equation:

A1(H) yn+1 + A0(H) yn + A1(H) yn−1 = 0

where H = ωh, h is the step length and A0(H) and A1(H) are polynomials of H .
The characteristic equation associated with (10) is given by:

A1(H) λ + A0(H) + A1(H) λ−1 = 0 (10)

where

A1(H) = 1 + H2 b0 + H4 b1 a0

A0(H) = c1 + H2 b1 − 2 H4 b1 a0

By applying k = 1 in the formula (8), we have that the phase-lag is equal to:

phl = 2 A1(H) cos(H) + A0(H)

2 A1(H)

= 1

2

2 (1 + H2 b0 + H4 b1 a0) cos(H) + c1 + H2 b1 − 2 H4 b1 a0

1 + H2 b0 + H4 b1 a0
(11)

We demand that the phase-lag is equal to zero and we consider that:

b0 = 1

12
, b1 = 5

6
, c1 = −2 (12)

Then we find out that:

a0 = −12 cos(H) − cos(H) H2 + 12 − 5 H2

10 cos(H) H4 − 10 H4 (13)

For small values of |H | the formulae given by (13) are subject to heavy cancella-
tions. In this case the following Taylor series expansions should be used:

a0 = 1

200
+ 1

5040
H2 + 1

144000
H4 + 1

4435200
H6

+ 691

99066240000
H8 + 1

4790016000
H10

+ 3617

592812380160000
H12 + 43867

250445794959360000
H14

+ 174611

35213055381504000000
H16 + · · · (14)

The behavior of the coefficients is given in the following Fig. 1.
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Fig. 1 Behavior of the coefficient a0 of the new method given by (13) for several values of H

The local truncation error of the new proposed method is given by:

LTE = h8

6048

(
y(8)

n + ω2 y(6)
n

)
(15)

Remark 1 The method developed in this section is the same with the obtained by
Simos in [111].

3.2 Second method of the family

Consider the family of methods presented in (9).
The application of the above method to the scalar test Eq. 4 gives the difference

Eq. 10 and the characteristic Eq. 10.
By applying k = 1 in the formula (8), we have that the phase-lag is given by (11).

The first derivative of the phase-lag is given by:

˙phl = 1

2

T4 − 2 T0 sin(H) + 2 Hb1 − 8 H3 b1 a0

T0

−1

2

(2 T0 cos(H) + c1 + H2 b1 − 2 H4 b1 a0) (2 H b0 + 4 H3 b1 a0)

T0
2

T0 = 1 + H2 b0 + H4 b1 a0

T4 = 2 (2 H b0 + 4 H3 b1 a0) cos(H) (16)
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We demand that the phase-lag and its derivative are equal to zero and we consider
that:

b0 = 1

12
, b1 = 5

6
(17)

Then we find out that:

a0 = −sin(H) H2 + 10 H + 2 cos(H) H − 12 sin(H)

10 sin(H) H4 − 40 cos(H) H3 + 40 H3

c1 = (24 cos(2 H) + 24 − 48 cos(H) + H2 cos(2 H)
(18)− 9 H2 + 8 cos(H) H2 − 6 H3 sin(H)

− 12 sin(H) H)/(6 sin(H) H − 24 cos(H) + 24)

For small values of |H | the formulae given by (19) are subject to heavy cancelations.
In this case the following Taylor series expansions should be used:

a0 = 1

200
+ 1

3780
H2 + 73

5443200
H4 + 509

769824000
H6

+ 2833543

88268019840000
H8 + 4912333

3177648714240000
H10

+ 288303913

3889442026229760000
H12 + 165095552521

46556621053970227200000
H14

+ 15619496804053

92182109686861049856000000
H16 + · · · (19)

c1 − 2 + 1

18144
H8 + 13

16329600
H10 + 31

461894400
H12

+ 308851

105921623808000
H14 + 537907

3813178457088000
H16 + · · · (20)

The behavior of the coefficients is given in the following Fig. 2.
The local truncation error of the new proposed method is given by:

LTE = h8

18144

(
3 y(8)

n + 4 ω2 y(6)
n + ω8 yn

)
(21)

3.3 Third method of the family

Consider the family of methods presented in (9).
The application of the above method to the scalar test Eq. 4 gives the difference

Eq. 10 and the characteristic Eq. 10.
By applying k = 1 in the formula (8), we have that the phase-lag is given by (11).

The first derivative of the phase-lag is given by (16). The second derivative of the
phase-lag can be written as:
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Fig. 2 Behavior of the coefficients of the new method given by (19) for several values of H

¨phl = 1

2

T3 − 4 T2 sin(H) − 2 T1 cos(H) + 2 b1 − 24 b1 a0 H2

T1

− (2 T2 cos(H) − 2 T1 sin(H) + 2 H b1 − 8 H3 b1 a0) T2

T1
2

+ (2 T1 cos(H) + c1 + H2 b1 − 2 H4 b1 a0) T2
2

T1
3

− 1

2

(2 T1 cos(H) + c1 + H2 b1 − 2 H4 b1 a0) (2 b0 + 12 b1 a0 H2)

T1
2

T1 = 1 + H2 b0 + H4 b1 a0

T2 = 2 H b0 + 4 H3 b1 a0 (22)

T3 = 2 (2 b0 + 12 b1 a0 H2) cos(H)

We demand that the phase-lag and its first and second derivative are equal to zero
and we consider that:

b0 = 1

12
(23)

Then we find out that:

a0 = 1

2

(
cos(H) H3 + 12 cos(H) H − 12 sin(H) + 3 sin(H) H2

)

/((
cos(H)2 H3 + 16 cos(H)2 H + 5 cos(H) H2 sin(H)

+72 cos(H) sin(H) + 2 cos(H) H3 + 32 cos(H) H

+ 2 sin(H) H2 − 48 H − 2 H3 − 72 sin(H)
)

H2
)
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c1 = 1

6

(
24 cos(H)2 H2 + cos(H)2 H4 + 96 cos(H)2

+ cos(H) sin(H) H3 + 12 cos(H) H2

−24 cos(H) sin(H) H − 96 cos(H) + cos(H) H4

− sin(H) H3 − 2 H4 − 60 sin(H) H − 48 H2
)

/
(

cos(H) H2 + 7 sin(H) H + 8 − 8 cos(H)
)

b1 = −1

6

(
cos(H)2 H3 + 16 cos(H)2 H + 5 cos(H) H2 sin(H)

+ 72 cos(H) sin(H) + 2 cos(H) H3

+ 32 cos(H) H + 2 sin(H) H2 − 48 H − 2 H3 − 72 sin(H)
)

/(
H

(
cos(H) H2 + 7 sin(H) H + 8 − 8 cos(H)

))
(24)

For small values of |H | the formulae given by (24) are subject to heavy cancella-
tions. In this case the following Taylor series expansions should be used:

a0 = 1

200
+ 1

2520
H2 + 31

907200
H4 + 1229

1197504000
H6

+ 18427

980755776000
H8 − 669341

98075577600000
H10

− 13764419

25184162304000000
H12 − 281298850211

5747730994317312000000
H14

− 161773544323

103459157897711616000000
H16 + · · ·

c1 = −2 − 1

6048
H8 − 17

2721600
H10 − 43

57480192
H12

− 1515133

23538138624000
H14 − 25819

4483454976000
H16 + · · ·

b1 = 5

6
+ 1

3024
H6 + 11

725760
H8 + 2353

1437004800
H10

+ 186533

1307674368000
H12 + 112457

8826801984000
H14

+ 1635421

1440534083788800
H16 + · · · (25)

The behavior of the coefficients is given in the following Fig. 3.
The local truncation error of the new proposed method is given by:

LTE = h8

6048

(
y(8)

n + 2 ω2 y(6)
n − 2ω6 y(2)

n − ω8 yn

)
(26)
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Fig. 3 Behavior of the coefficients of the new method given by (24) for several values of H

3.4 Fourth method of the family

Consider the family of methods presented in (9).
The application of the above method to the scalar test Eq. 4 gives the difference

Eq. 10 and the characteristic Eq. 10.
By applying k = 1 in the formula (8), we have that the phase-lag is given by (11).

The first derivative of the phase-lag is given by (16). The second derivative of the
phase-lag is given by (23). The third derivative of the phase-lag can be written as:

...
phl = 1

2

T9 − 6 T8 cos(H) + 2 T5 sin(H) − 48 b1 a0 H

T5

− 3

2

(2 T7 cos(H) − 4 T8 sin(H) − 2 T5 cos(H) + 2 b1 − 24 b1 a0 H2) T8

T5
2

+ 3 (2 T8 cos(H) − 2 T5 sin(H) + 2 H b1 − 8 H3 b1 a0) T8
2

T5
3
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− 3

2

(2 T8 cos(H) − 2 T5 sin(H) + 2 H b1 − 8 H3 b1 a0) T7

T5
2 − 3 T6 T8

3

T5
4

+ 3 T6 T8 T7

T5
3 − 12 T6 b1 a0 H

T5
2

T5 = 1 + H2 b0 + H4 b1 a0

T6 = 2 T5 cos(H) + c1 + H2 b1 − 2 H4 b1 a0 (27)

T7 = 2 b0 + 12 b1 a0 H2

T8 = 2 H b0 + 4 H3 b1 a0

T9 = 48 b1 a0 H cos(H) − 6 T7 sin(H)

We demand that the phase-lag and its first, second and third derivative are equal to
zero and we find out that:

a0 = 1

4

(
3 cos(H)2 + cos(H)2 H2 + 2 H2 − 3

)

/((
6 cos(H)3 H + 6 sin(H) cos(H)2

− 2 cos(H)2 H2 sin(H) + cos(H)2 H3

+ 3 cos(H)2 H − 6 cos(H) sin(H)

− 4 cos(H) H2 sin(H) − 12 cos(H) H + 2 H3

+ 3 H + 12 sin(H) H2
)

H
)

c1 = − 2
(
−12 cos(H)3 H + cos(H)2 H3 − 21 cos(H)2 H

− 12 sin(H) cos(H)2 − 4 cos(H)2 H2 sin(H) + 12 cos(H) sin(H)

− 8 cos(H) H2 sin(H) + 24 cos(H) H + 2 H3 + 9 H + 24 sin(H) H2
)

/(
cos(H)2 H3 − 21 cos(H)2 H + 8 cos(H) H2 sin(H)

− 12 cos(H) H − 12 cos(H) sin(H) + 4 sin(H) H2

+ 33 H + 12 sin(H) + 2 H3
)

b0 = − 2
(

3 cos(H)2 H + cos(H)2 H3 + 6 cos(H) sin(H)

+ 4 cos(H) H2 sin(H) + 6 cos(H) H

+ 2 sin(H) H2 − 9 H − 6 sin(H) + 2 H3
)

/
((

cos(H)2 H3 − 21 cos(H)2 H + 8 cos(H) H2 sin(H)

− 12 cos(H) H − 12 cos(H) sin(H)

+ 4 sin(H) H2 + 33 H + 12 sin(H) + 2 H3
)

H2
)

b1 = 4
(

6 cos(H)3 H + 6 sin(H) cos(H)2 − 2 cos(H)2 H2 sin(H)

+ cos(H)2 H3 + 3 cos(H)2 H − 6 cos(H) sin(H)
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− 4 cos(H) H2 sin(H) − 12 cos(H) H + 2 H3 + 3 H + 12 sin(H) H2
)

/((
cos(H)2 H3 − 21 cos(H)2 H + 8 cos(H) H2 sin(H) − 12 cos(H) H

− 12 cos(H) sin(H) + 4 sin(H) H2 + 33 H + 12 sin(H) + 2 H3
)

H2
)

(28)

For small values of |H | the formulae given by (28) are subject to heavy cancella-
tions. In this case the following Taylor series expansions should be used:

a0 = 1

200
+ 1

1260
H2 + 29

504000
H4 + 1433

1164240000
H6

− 63101

363242880000
H8 − 2228861

127135008000000
H10

− 8804897

77806624896000000
H12 + 240953700049

2048959660011264000000
H14

+ 9699610781879

819583864004505600000000
H16 + · · ·

c1 = −2 + 1

6048
H8 + 1

43200
H10 + 1

532224
H12

+ 41

5943974400
H14 − 601

24141680640
H16 + · · ·

b0 = 1

12
− 1

1008
H4 − 31

181440
H6

− 221

13685760
H8 − 619

1345344000
H10

+ 25031

174356582400
H12 + 84256583

2667655710720000
H14

+ 1030007057

290289444157440000
H16 + · · ·

b1 = 5

6
+ 1

504
H4 − 29

90720
H6

− 3271

47900160
H8 − 35293

4540536000
H10

− 36019

87178291200
H12 + 47333617

1333827855360000
H14

+ 294008389

24562952967168000
H16 + · · · (29)

The behavior of the coefficients is given in the following Fig. 4.
The local truncation error of the new proposed method is given by:

LTE = h8

6048

(
y(8)

n + 4 ω2 y(6)
n + 6 ω4 y(4)

n + 4ω6 y(2)
n + ω8 yn

)
(30)
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Fig. 4 Behavior of the coefficients of the new method given by (28) for several values of H

4 Error analysis

We will study the following methods:

– The First Method of the Family (mentioned as P L1)
– The Second Method of the Family (mentioned as P L2)
– The Third Method of the Family (mentioned as P L3)
– The Fourth Method of the Family (mentioned as P L4)

The error analysis is based on the following steps:

– The radial time independent Schrödinger equation is of the form

y′′(x) = f (x) y(x) (31)

– Based on the paper of Ixaru and Rizea [20], the function f(x) can be written in the
form:
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f (x) = g(x) + G (32)

where g(x) = V (x) − Vc = g, where Vc is the constant approximation of the
potential and G = v2 = Vc − E .

– We express the derivatives y(i)
n , i = 2, 3, 4, . . . , which are terms of the local trun-

cation error formulae, in terms of the Eq. 31. The expressions are presented as
polynomials of G.

– Finally, we substitute the expressions of the derivatives, produced in the previous
step, into the local truncation error formulae.

Based on the procedure mentioned above and on the formulae:

y(2)
n = (V(x) − Vc + G) y(x)

y(4)
n =

(
d2

dx2 V(x)

)
y(x) + 2

(
d

dx
V(x)

) (
d

dx
y(x)

)

+ (V(x) − Vc + G)

(
d2

dx2 y(x)

)

y(6)
n =

(
d4

dx4 V(x)

)
y(x) + 4

(
d3

dx3 V(x)

) (
d

dx
y(x)

)

+ 3

(
d2

dx2 V(x)

) (
d2

dx2 y(x)

)

+ 4

(
d

dx
V(x)

)2

y(x)

+ 6 (V(x) − Vc + G)

(
d

dx
y(x)

) (
d

dx
V(x)

)

+ 4 (U(x) − Vc + G) y(x)

(
d2

dx2 V(x)

)

+ (V(x) − Vc + G)2
(

d2

dx2 y(x)

)
. . .

we obtain the following expressions:
The first method of the family

LTEPL1 = h8
[
− 1

6048
g(x) y(x) G3 +

(
− 5

2016

(
d2

dx2 g(x)

)
y(x)

− 1

1008

(
d

dx
g(x)

) (
d

dx
y(x)

)
− 1

2016
g(x)2 y(x)

)
G2

+
(

− 5

2016

(
d4

dx4 g(x)

)
y(x) − 5

1512

(
d3

dx3 g(x)

) (
d

dx
y(x)

)

− 1

336
g(x)

(
d

dx
y(x)

) (
d

dx
g(x)

)
− 37

6048
g(x) y(x)

(
d2

dx2 g(x)

)
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− 1

252

(
d

dx
g(x)

)2

y(x) − 1

2016
g(x)3 y(x)

)

G

− 1

6048

(
d6

dx6 g(x)

)
y(x) − 1

1008

(
d5

dx5
g(x)

) (
d

dx
y(x)

)

− 1

378
g(x) y(x)

(
d4

dx4 g(x)

)
− 5

2016

(
d2

dx2 g(x)

)2

y(x)

− 13

3024

(
d

dx
g(x)

)
y(x)

(
d3

dx3 g(x)

)

− 1

252
g(x)

(
d

dx
y(x)

) (
d3

dx3 g(x)

)

− 1

504
g(x)2

(
d

dx
y(x)

) (
d

dx
g(x)

)

− 1

126

(
d

dx
g(x)

) (
d

dx
y(x)

) (
d2

dx2 g(x)

)

− 11

3024
g(x)2 y(x)

(
d2

dx2 g(x)

)
− 1

216
g(x) y(x)

(
d

dx
g(x)

)2

− 1

6048
g(x)4 y(x)

]
(33)

The second method of the family

LTEPL2 = h8
[(

19

9072

(
d2

dx2 g(x)

)
y(x) + 1

1512

(
d

dx
g(x)

) (
d

dx
y(x)

)

+ 1

3024
g(x)2 y(x)) G2 +

(
11

4536

(
d4

dx4 g(x)

)
y(x)

+ 1

324

(
d3

dx3 g(x)

) (
d

dx
y(x)

)
+ 1

378
g(x)

(
d

dx
y(x)

) (
d

dx
g(x)

)

+ 13

2268
g(x) y(x)

(
d2

dx2 g(x)

)
+ 17

4536

(
d

dx
g(x)

)2

y(x)

+ 1

2268
g(x)3 y(x)

)
G + 1

6048

(
d6

dx6 g(x)

)
y(x)

+ 1

1008

(
d5

dx5
g(x)

) (
d

dx
y(x)

)
+ 1

378
g(x) y(x)

(
d4

dx4 g(x)

)

+ 5

2016

(
d2

dx2 g(x)

)2

y(x) + 13

3024

(
d

dx
g(x)

)
y(x)

(
d3

dx3 g(x)

)

+ 1

252
g(x)

(
d

dx
y(x)

) (
d3

dx3 g(x)

)
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+ 1

504
g(x)2

(
d

dx
y(x)

) (
d

dx
g(x)

)

+ 1

126

(
d

dx
g(x)

) (
d

dx
y(x)

) (
d2

dx2 g(x)

)

+ 11

3024
g(x)2 y(x)

(
d2

dx2 g(x)

)

+ 1

216
g(x) y(x)

(
d

dx
g(x)

)2

+ 1

6048
g(x)4 y(x)

]

(34)

The third method of the family

LTEPL3 = h8
[

1

756

(
d2

dx2 g(x)

)
y(x) G2

+
(

1

432

(
d4

dx4 g(x)

)
y(x) + 1

378

(
d3

dx3 g(x)

) (
d

dx
y(x)

)

+ 1

504
g(x)

(
d

dx
y(x)

) (
d

dx
g(x)

)

+ 5

1008
g(x) y(x)

(
d2

dx2 g(x)

)
+ 5

1512

(
d

dx
g(x)

)2

y(x)

+ 1

3024
g(x)3 y(x)

)
G + 1

6048

(
d6

dx6 g(x)

)
y(x)

+ 1

1008

(
d5

dx5
g(x)

) (
d

dx
y(x)

)

+ 1

378
g(x) y(x)

(
d4

dx4 g(x)

)

+ 5

2016

(
d2

dx2 g(x)

)2

y(x) + 13

3024

(
d

dx
g(x)

)
y(x)

(
d3

dx3 g(x)

)

+ 1

252
g(x)

(
d

dx
y(x)

) (
d3

dx3 g(x)

)

+ 1

504
g(x)2

(
d

dx
y(x)

) (
d

dx
g(x)

)

+ 1

126

(
d

dx
g(x)

) (
d

dx
y(x)

) (
d2

dx2 g(x)

)

+ 11

3024
g(x)2 y(x)

(
d2

dx2 g(x)

)

+ 1

216
g(x) y(x)

(
d

dx
g(x)

)2

+ 1

6048
g(x)4 y(x)

]

(35)
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The fourth method of the family

LTEPL4 = h8
[(

1

504

(
d4

dx4 g(x)

)
y(x) + 1

756

(
d3

dx3 g(x)

) (
d

dx
y(x)

)

+ 1

378
g(x) y(x)

(
d2

dx2 g(x)

)
+ 1

504

(
d

dx
g(x)

)2

y(x)

)

G

+ 1

6048

(
d6

dx6 g(x)

)
y(x) + 1

1008

(
d5

dx5
g(x)

) (
d

dx
y(x)

)

+ 1

378
g(x) y(x)

(
d4

dx4 g(x)

)
+ 5

2016

(
d2

dx2 g(x)

)2

y(x)

+ 13

3024

(
d

dx
g(x)

)
y(x)

(
d3

dx3 g(x)

)

+ 1

252
g(x)

(
d

dx
y(x)

) (
d3

dx3 g(x)

)

+ 1

504
g(x)2

(
d

dx
y(x)

) (
d

dx
g(x)

)

+ 1

126

(
d

dx
g(x)

) (
d

dx
y(x)

) (
d2

dx2 g(x)

)

+ 11

3024
g(x)2 y(x)

(
d2

dx2 g(x)

)

+ 1

216
g(x) y(x)

(
d

dx
g(x)

)2

+ 1

6048
g(x)4 y(x)

]

(36)

We consider two cases in terms of the value of E :

– The Energy is close to the potential, i.e. G = Vc − E ≈ 0. So only the free terms of
the polynomials in G are considered. Thus for these values of G, the methods are
of comparable accuracy. This is because the free terms of the polynomials in G, are
the same for the cases of the classical method and of the new developed methods.

– G � 0 or G 	 0. Then | G | is a large number. So, we have the following
asymptotic expansions of the Eqs. 33, 34, 35 and 36.
The first method of the family

LTEPL1 = h8
(

− 1

6048
g(x) y(x) G3 + · · ·

)
(37)

The second method of the family

LTEPL2 = h8
(

19

9072

(
d2

dx2 g(x)

)
y(x) + 1

1512

(
d

dx
g(x)

) (
d

dx
y(x)

)

+ 1

3024
g(x)2 y(x)) G2 + · · ·

)
(38)
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The third method of the family

LTEPL3 = h8
(

1

756

(
d2

dx2 g(x)

)
y(x) G2 + · · ·

)
(39)

The fourth method of the family

LTEPL4 = h8
((

1

504

(
d4

dx4 g(x)

)
y(x) + 1

756

(
d3

dx3 g(x)

) (
d

dx
y(x)

)

+ 1

378
g(x) y(x)

(
d2

dx2 g(x)

)
+ 1

504

(
d

dx
g(x)

)2

y(x)

)

G + · · ·
)

(40)

From the above equations we have the following theorem:

Theorem 2 For the First Method of the New Family of Methods the error increases
as the third power of G. For the Second and Third Methods of the New Family of
Methods the error increases as the second power of G. For the Fourth Method of the
New Family of Methods the error increases as the first power of G. It is easy one to
see that the coefficient of the second power of G in the case of the second method of
the New Family of Methods is 1.583333333 times larger than the coefficient of the
second power of G in the case of the third method of the New Family of Methods. So,
for the numerical solution of the time independent radial Schrödinger equation the
new obtained Fourth Method of the New Family of Methods is the most accurate one,
especially for large values of | G |=| Vc − E |.

5 Stability analysis

We apply the new family of methods to the scalar test equation:

y′′ = −t2 y, (41)

where t 
= ω. We obtain the following difference equation:

A1(H, s) yn+1 + A0(H, s) yn + A1(H, s) yn−1 = 0

where s = t h, h is the step length and A0(H, s) and A1(H, s) are polynomials of s.
The characteristic equation associated with (42) is given by:

A1(H, s) s + A0(H, s) + A1(H, s) s−1 = 0 (42)

where

A1(H, s) = 1 + s2 b0 + s4 b1 a0

A0(H, s) = c1 + s2 b1 − 2 s4 b1 a0 (43)
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Definition 1 (see [125]) A symmetric four-step method with the characteristic equa-
tion given by (42) is said to have an interval of periodicity

(
0, w2

0

)
if, for all w ∈(

0, w2
0

)
, the roots zi , i = 1, 2 satisfy

z1,2 = e±i θ(t h), |zi | ≤ 1, i = 3, 4 (44)

where θ(t h) is a real function of t h and s = t h.

Definition 2 (see [125]) A method is called P-stable if its interval of periodicity is
equal to (0,∞).

Theorem 3 (see [126]) A symmetric two-step method with the characteristic equa-
tion given by (42) is said to have a nonzero interval of periodicity

(
0, s2

0

)
if, for all

s ∈ (
0, s2

0

)
the following relations are hold

P1(H, s) > 0, P2(H, s) > 0, (45)

where H = ω h, s = t h and:

P1(H, s) = A0(H, s) + 2 A1(H, s) > 0,

P2(H, s) = A0(H, s) − 2 A1(H, s) > 0, (46)

Definition 3 A method is called singularly almost P-stable if its interval of periodicity
is equal to (0,∞)− S2 only when the frequency of the phase fitting is the same as the
frequency of the scalar test equation, i.e. H = s.

Based on (43) the stability polynomials (46) for the new developed methods take
the form:

P1(H, s) = c1 + v2 b1 + 2 + 2 v2 b0,

P2(H, s) = c1 + v2 b1 − 4 v4 b1 a0 − 2 − 2 v2 b0 (47)

In Figs. 5, 6, 7 and 8 we present the s–H planes for the methods developed in this
paper. A shadowed area denotes the s–H region where the method is unstable, while
a white area denotes the region where the method is stable. In Fig. 5 we present the
s–H plane for the first method of the new family of method developed in this paper
(Sect. 3.1). In Fig. 6 we present the s–H plane for the second method of the new family
of method developed in this paper (Sect. 3.2). In Fig. 7 we present the s–H plane for the
third method of the new family of method developed in this paper (Sect. 3.3). Finally,
in Fig. 8 we present the s–H plane for the fourth method of the new family of method
developed in this paper (Sect. 3.4).

In the case that the frequency of the scalar test equation is equal with the frequency
of phase fitting, i.e. in the case that H = s, we have the following figure for the stabil-
ity polynomials of the new developed methods. A method is P-stable if the s–H plane

2 where S is a set of distinct points.

123



J Math Chem (2009) 46:621–651 639

0 5 10 15 20
2

4

6

8

10

12

14

16
Stability Regions

H

s

Fig. 5 s–H plane of the first method of the new family of method developed in this paper (Sect. 3.1)
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Fig. 6 s–H plane of the second method of the new family of method developed in this paper (Sect. 3.2)
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Fig. 7 s–H plane of the third method of the new family of method developed in this paper (Sect. 3.3)
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Fig. 8 s–H plane of the fourth method of the new family of method developed in this paper (Sect. 3.4)
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Fig. 9 Stability polynomials of the new developed methods in the case that H = s

is not shadowed. From the above diagrams it is easy for one to see that the interval of
periodicity of all the new methods is equal to:

(
0, π2

)
(Fig. 9).

Remark 2 For the solution of the Schrödinger equation the frequency of the exponen-
tial fitting is equal to the frequency of the scalar test equation. So, it is necessary to
observe the surroundings of the first diagonal of the w–H plane.

6 Numerical results—conclusion

In order to illustrate the efficiency of the new methods obtained in Sects. 3.1–3.4, we
apply them to the radial time independent Schrödinger equation.

In order to apply the new methods to the radial Schrödinger equation the value
of parameter v is needed. For every problem of the one-dimensional Schrödinger
equation given by (1) the parameter v is given by

v = √|q(x)| = √|V (x) − E | (48)

where V (x) is the potential and E is the energy.
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Fig. 10 The Woods-Saxon potential

6.1 Woods-Saxon potential

We use the well known Woods-Saxon potential given by

V (x) = u0

1 + z
− u0z

a (1 + z)2 (49)

with z = exp [(x − X0) /a] , u0 = −50, a = 0.6, and X0 = 7.0.
The behavior of Woods-Saxon potential is shown in the Fig. 10.
It is well known that for some potentials, such as the Woods-Saxon potential, the

definition of parameter v is not given as a function of x but it is based on some critical
points which have been defined from the investigation of the appropriate potential (see
for details [13]).

For the purpose of obtaining our numerical results it is appropriate to choose v as
follows (see for details [13]):

v =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√−50 + E, for x ∈ [0, 6.5 − 2h],√−37.5 + E, for x = 6.5 − h√−25 + E, for x = 6.5√−12.5 + E, for x = 6.5 + h√
E, for x ∈ [6.5 + 2h, 15]

(50)

6.2 Radial Schrödinger equation—the resonance problem

Consider the numerical solution of the radial time independent Schrödinger equation
(1) in the well-known case of the Woods-Saxon potential (49). In order to solve this
problem numerically we need to approximate the true (infinite) interval of integration
by a finite interval. For the purpose of our numerical illustration we take the domain
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of integration as x ∈ [0, 15]. We consider Eq. 1 in a rather large domain of energies,
i.e. E ∈ [1, 1000].

In the case of positive energies, E = k2, the potential dies away faster than the
term l(l+1)

x2 and the Schrödinger equation effectively reduces to

y′′(x) +
(

k2 − l(l + 1)

x2

)
y(x) = 0 (51)

for x greater than some value X .
The above equation has linearly independent solutions kx jl(kx) and kxnl(kx)

where jl(kx) and nl(kx) are the spherical Bessel and Neumann functions respectively.
Thus the solution of Eq. 1 (when x → ∞) has the asymptotic form

y(x)  Akx jl(kx) − Bkxnl(kx)

 AC

[
sin

(
kx − lπ

2

)
+ tanδl cos

(
kx − lπ

2

)]
(52)

where δl is the phase shift, that is calculated from the formula

tanδl = y(x2)S(x1) − y(x1)S(x2)

y(x1)C(x1) − y(x2)C(x2)
(53)

for x1 and x2 distinct points in the asymptotic region (we choose x1 as the right hand
end point of the interval of integration and x2 = x1 − h) with S(x) = kx jl(kx) and
C(x) = −kxnl(kx). Since the problem is treated as an initial-value problem, we need
y0 before starting a one-step method. From the initial condition we obtain y0. With
these starting values we evaluate at x1 of the asymptotic region the phase shift δl .

For positive energies we have the so-called resonance problem. This problem con-
sists either of finding the phase-shift δl or finding those E , for E ∈ [1, 1000], at which
δl = π

2 . We actually solve the latter problem, known as the resonance problem when
the positive eigenenergies lie under the potential barrier.

The boundary conditions for this problem are:

y(0) = 0, y(x) = cos
(√

Ex
)

for large x . (54)

We compute the approximate positive eigenenergies of the Woods-Saxon resonance
problem using:

– The Numerov’s method which is indicated as Method I.
– The Exponentially-fitted four-step method developed by Raptis [16] which is indi-

cated as Method II.
– The Two-Step Numerov-type Method with minimum phase-lag produced by

Chawla and Rao [127] which is indicated as Method III.
– The new Two-Step Numerov-Type Method with phase-lag equal to zero obtained

in Sect. 3.1 which is indicated as Method IV.
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– The new Two-Step Numerov-Type Method with phase-lag and its first derivative
equal to zero obtained in Sect. 3.2 which is indicated as Method V.

– The new Two-Step Numerov-Type Method with phase-lag and its first and second
derivatives equal to zero obtained in Sect. 3.3 which is indicated as Method VI.

– The new Two-Step Numerov-Type Method with phase-lag and its first, second and
third derivatives equal to zero obtained in Sect. 3.4 which is indicated as Method
VII.

The computed eigenenergies are compared with exact ones. In Fig. 11 we present
the maximum absolute error log10 (Err) where

Err = |Ecalculated − Eaccurate| (55)

of the eigenenergy E1, for several values of NFE = Number of Function Evaluations.
In Fig. 12 we present the maximum absolute error log10 (Err) where

Err = |Ecalculated − Eaccurate| (56)

of the eigenenergy E3, for several values of NFE = Number of Function Evaluations.

7 Conclusions

In the present paper we have developed a family of methods of sixth algebraic order
for the numerical solution of the radial Schrödinger equation.

More specifically we have developed:

1. A Two-Step Numerov-Type Method with phase-lag equal to zero.
2. A Two-Step Numerov-Type Method with phase-lag and its first derivative equal to

zero.
3. A Two-Step Numerov-Type Method with phase-lag and its first and second deriv-

atives equal to zero.
4. A Two-Step Numerov-Type Method with phase-lag and its first, second and third

derivatives equal to zero.

We have applied the new method to the resonance problem of the radial Schrödinger
equation.

Based on the results presented above we have the following conclusions:

– The Exponentially-fitted four-step method developed by Raptis [16] (denoted as
Method II) is more efficient than the Numerov’s Method (denoted Method I).

– The Two-Step Numerov-type Method with minimum phase-lag produced by Cha-
wla and Rao [127] (Method III) is more efficient than the Exponentially-fitted
four-step method developed by Raptis [16] (Method II) for the energy 163.215341
and less efficient for the energy 989.701916.

– The new developed methods are much more efficient than the older ones.
– The Two-Step Numerov-Type Method with phase-lag and its first derivative equal

to zero (Method V) is more efficient than the New Two-Step Numerov-Type Method
with phase-lag equal to zero (Method IV).
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Fig. 11 Error Errmax for several values of n for the eigenvalue E1 = 163.215341. The nonexistence of a
value of Errmax indicates that for this value of n, Errmax is positive

– The Two-Step Numerov-Type Method with phase-lag and its first and second deriv-
atives equal to zero (Method VI) is more efficient than the Two-Step Numerov-Type
Method with phase-lag and its first derivative equal to zero (Method V).

– The Two-Step Numerov-Type Method with phase-lag and its first, second and third
derivatives equal to zero (Method VII) is more efficient than the Two-Step Nume-
rov-Type Method with phase-lag and its first and second derivatives equal to zero
(Method VI).

All computations were carried out on a IBM PC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).
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Fig. 12 Error Errmax for several values of n for the eigenvalue E3 = 989.701916. The nonexistence of a
value of Errmax indicates that for this value of n, Errmax is positive
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